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This paper provides an introduction to the applications of dynamical systems 
theory to nonequilibrium statistical mechanics, in particular to a study of non- 
equilibrium phenomena in Lorentz lattice gases with stochastic collision rules. 
Using simple arguments, based upon discussions in the mathematical literature, 
we show that such lattice gases belong to the category of dynamical systems 
with positive Lyapunov exponents. This is accomplished by showing how such 
systems can be expressed in terms of continuous phase space variables. Expres- 
sions for the Lyapunov exponent of a one-dimensional Lorentz lattice gas with 
periodic boundaries are derived. Other quantities of interest for the theory of 
irreversible processes are discussed. 

KEY W O R D S :  Lorentz lattice gas; Lyapunov exponents; dynamical chaos; 
KS entropy; diffusion, kinetic theory of gases, random walks. 

1. I N T R O D U C T I O N  

Over the past several years a number of workers have begun to explore the 
connections between the statistical mechanics of irreversible processes in 
fluids and the ergodic behavior of dynamical systems. Studies by Posch and 
Hoover I1~ and Evans e t  al. ~'-~ of fluid systems subjected to external forces 
producing shear flows or electric currents with internal Gaussian thermo- 
stats maintaining a constant kinetic or total energy led to very interesting 
connections between the transport coefficients and the Lyapunov exponents 
for the thermostatted systems. A good example of the work is the study of 
shear flows by Evans e t  al/2~. They were able to relate the coefficient of 
shear viscosity r/(),) of a thermostatted system subjected to an external force 
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providing a shear flow, with y = (OUy/OX), to the most positive Lyapunov 
exponent, 2max(?) and the most negative Lyapunov exponent, 2mi,(Y) 
through the relation 

3nk a T 
t/(7) = -5 (2rnax(7) "1- 2min(7) ) (1.1) 

7- 

Here, we imagine a shear flow with an x-dependent velocity in the y direc- 
tion, Uy(X), the system is maintained at temperature T by the thermostat, 
n is the number density of the fluid, and k B is Boltzmann's constant. The 
positive (or negative) Lyapunov exponents characterize the exponential 
separation (or convergence) rates of two nearby trajectories in the 2dN- 
dimensional phase space, F, for N particles each of which moves in a 
d-dimensional space. The classical mechanics of Hamiltonian systems 
requires that the most positive and the most negative Lyapunov exponents 
have exactly the same magnitude, so the right-hand side of Eq. (1.1) 
might appear to vanish, but the presence of the Gaussian thermostat 
prevents the system from being a Hamiltonian system. For finite r/the sum 
['~max() ~) -{-'~min(~)] is at least of order 7 2 as the shear rate becomes small. 
A rigorous mathematical study of the electrical conductivity of an electron 
moving in a periodic array of fixed scatterers, also with a thermostat to 
maintain the constant energy of the electron in the presence of an applied 
external force, leads to results very similar to Eq. (1.1), where r/ becomes 
the electrical conductivity and ), the applied electric field strength, c3~ 

A study of the relation between transport coefficients and chaotic 
behavior for purely Hamiltonian systems has been initiated by Gaspard 
and Nicolis 141 and Gaspard and co-workers/5'6) These authors relate 
transport coefficients for fluid systems to the escape rate of a set of trajec- 
tories from a certain well defined region in the appropriate phase space. 
Typical of the results of this approach is the expression for the coefficient 
of diffusions D of a single moving particle in an unbounded region with a 
fixed array of scatterers. Then 

(,)2 E D =  lim ,n  ~ 2i(Fz)-hns(FL) ] (1.2) 
L~cr~. 2i'>0 

Here one considers all trajectories of the moving particles such that their 
x coordinate remains within the interval 

- -  L / 2  <.% x <.% L / 2  (1.3) 

Most trajectories, except for a set of measure zero, will eventually leave the 
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interval. However there is a fractal set of trajectories FL that never leave the 
interval. Then 2i(FL) is a Lyapunov exponent for trajectories on the fractal 
set, hKs(FL) is the Kolmogorov-Sinai entropy per unit time for trajectories 
on the fractal set, and only the positive (separating) Lyapunov exponents 
are summed over in Eq. (1.2). While expressions (1.1) and (1.2) have some 
structural similarities, the connection between them remains obscure. 
Nevertheless, the fact is that a direct relation exists between quantities of 
interest for the description of irreversible processes in fluids and quantities 
such as the Lyapunov exponents and KS entropies that describe the 
fundamental dynamical behavior of the phase space trajectories of the same 
system. 

In this paper we describe the methods by which dynamical systems 
theory can be applied to Lorentz lattice gases with stochastic collision rules 
governing the interactions between a moving particle on the lattice and 
fixed scatterers distributed on lattice sitesJ 7~ This system is simple enough 
that the applications of dynamical systems theory to it can be made very 
clear, and all transport and dynamical properties of interest can be 
calculated in full detail. These properties include the diffusion coefficient, 
Lyapunov exponents, KS entropies, and a number of related quantities. 
This paper is intended to introduce some of the essential ideas of this 
approach to nonequilibrium processes for a simple example. It draws upon 
elementary mathematical arguments and models to show that the Lorentz 
lattice gas can be thought of as a dynamical system with many of the 
properties normally present in chaotic Hamiltonian systems. A full descrip- 
tion of this line of research on Lorentz lattice gases will be presented else- 
whereJ 8) There we will show that the Lorentz lattice gas belongs to the 
category of systems discussed by Gaspard et aL, such that its transport 
properties can be characterized by the dynamics of a fractal set of trapped 
trajectories. We will compute these chaotic properties of open systems 
using both analytical and computational methods, in order to illustrate 
Eq. (1.2) for Lorentz lattice gases and to develop further consequences of 
the approach to transport phenomena. 

The outline of this paper is as follows. In Section 2 we describe Lorentz 
lattice gas systems and give the stochastic collision rules. In Section 3 we 
provide a basic introduction to the chaotic dynamics of a simple stochastic 
system, the coin toss system, in order to develop the ideas needed for the 
Lorentz lattice ,gas. This section is largely based upon the mathematical 
literature. In Section 4 we discuss the one-dimensional Lorentz lattice gas 
and compute the Lyapunov exponent, the KS entropy, and other quantities, 
all for closed periodic systems. We summarize this paper in Section 5, and 
describe the extensions to open systems which will be presented in further 
publications. 
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2. THE LORENTZ LATTICE GAS 

We consider a regular lattice of points in d dimensions. The dynamical 
state of a particle moving on the lattice is described by its position r and 
by its velocity c. The positions are restricted to lattice sites and the velocity 
is restricted to lie along a lattice vector. The spacing between nearest 
neighbor lattice sites will be taken to be unity, and the magnitude of c will 
be set equal to one, le[ = 1, so that at each unit interval of time the moving 
particle travels from one site to a nearest neighbor along one of the lattice 
directions. We suppose that fixed scatterers are placed at lattice sites at 
random with density p such that p = 1 corresponds to full coverage of the 
lattice by scatterers and p = 0  corresponds to a lattice without scatterers. 
We will refer to a given configuration of scatterers as a "quenched" con- 
figuration and we may wish to average over all configurations of scatterers 
at a fixed density or with a fixed number of scatterers. The dynamics of the 
moving particle on the lattice is determined by the rules governing the 
collision of the moving particle with a scatterer. The collision rules are as 
follows: 

1. If the moving particle arrives at a site where there is no scatterer, 
then its velocity does not change and at the next instant of time it proceeds 
to the nearest neighbor in the direction of its velocity. 

2. If  the particle arrives at a site where a scatterer is situated, then a 
collision instantaneously takes place which transforms a "precollision" into 
a "postcollision" velocity. 

(a) The precollision velocity is the velocity of the moving particle 
when it arrives at the site with the scatterer. It lies along the vector connecting 
the site with the scatterer and the previous site. 

(b) The postcollision velocity is chosen according to a stochastic 
rule: with probability p the particle will have a postcollision velocity 
parallel to the precollision velocity, with probability q the postcollision 
velocity will be opposite to the precollision velocity, and with probability 
s it will lie along one of the other lattice directions. The probabilities p, q, 
s satisfy 

p + q + ( b - 2 ) s =  1 (2.1) 

where b is the coordination number of a lattice site. 

3. At the next instant of time the particle moves to the nearest 
neighbor site in the direction of its postcollision velocity. 

The Lorentz lattice gas (LLG) represents a discretization of the 
usual Lorentz gas of kinetic theory. Its transport properties and velocity 
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autocorrelation functions have been studied in considerable detail by Ernst 
and co-workers. ~7~ Here we focus on the LLG as a dynamical system. 

3. S T O C H A S T I C  P R O C E S S E S  AS D Y N A M I C A L  S Y S T E M S :  
A S I M P L E  E X A M P L E  

One ordinarily thinks of dynamical systems as having a differential 
structure so that the concept of nearby and exponentially separating 
trajectories needed to define, among other things, Lyapunov exponents can 
be applied to them. Such a differential structure does not appear to be 
appropriate for LLGs at first sight, since the dynamics takes place on a set 
of discrete positions and velocities and the collision rules are stochastic 
rather than deterministic. There is a large and very useful literature which 
shows how one can map many discrete stochastic processes onto differen- 
tiable dynamical systems and vice versa, so that it is not unusual to be able 
to define Lyapunov exponents and KS entropies for such systemsJ 9-~t~ 
What is lost in the mapping of a stochastic system onto a deterministic one 
is the dimensionality of the phase space, so that instead of getting a set of 
individual Lyapunov exponents for these stochastic systems, one obtains a 
quantity which can be interpreted as the sum of all the positive Lyapunov 
exponents. 9-~2 However, for the connection between dynamical quantities 
and transport coefficients, as typified by Eq. (1.2), this sum is all that is 
needed. 

There are a number of equivalent methods by means of which 
stochastic process can be described as dynamical systems with Lyapunov 
exponents, KS entropies, and related quantities. There are also a number 
of papers that introduce dynamical systems methods for studies of cellular 
automataJ  TM Here we shall use a method based upon linear one-dimen- 
sional maps, which is conceptually very simple and leads immediately to 
simple expressions for Lyapunov exponents. While the examples studied 
here are quite elementary and almost self-evident, the strategy used here 
can easily be extended to the more complicated case of open systems or 
higher dimensions, as discussed in Section 1. 

We begin the discussion with a well-known, simple stochastic system 
that can be mapped onto a differentiable dynamical system, a coin toss 
experiment with a probability of p for finding heads and q for tails, with 
p + q =  1. The .phase space of such a system consists of the set of all 
possible infinite sequences of O's and l 's of the form 

a = %oq ~_,... (3.1) 

where ~i = O, 1, with 0 representing tails and 1 representing heads, and hence 
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cq has an expectation value ( c t ; ) = p .  For  a given set of  {ct,.} Eq. (3.1) 
represents one particular run of  the experiment starting from t = 0 and con- 
tinuing to t = + oo with the outcome at time t -- i taking the value e,.. If  a(0) 
denotes a particular sequence 

the effect of tossing the coin once is to generate a new sequence 

a ( 1 )  = ~ 1 0 ~ _ , ~ 3  --" 

where each tx i is replaced by e~ = ~+1  and the 0% dropped. Thus the 
dynamics of  the coin toss is represented by a shift of  the entire sequence 
one unit to the left and dropping the leftmost term. Consequently, after t 
tosses of  the coin, one obtains a(t) with 

a(t) = 0q~,+ 10~,+ 2 .. .  (3.2) 

Of course in each of these infinite sequences, heads will occur a fraction p 
of  the time and tails a fraction q of  the time. These sequences are com- 
monly referred to as (one-s ided))  Bernoulli sequences, and the transition 
from a(0) to a(1), is known as a Bernoulli shift. 19-~ 

There is an uncountable infinity of  sequences of  the type (3.1) and they 
can be put into one-to-one correspondence with points on the interval 
0 ~< x ~< 1. The dynamical process of  tossing a coin can be put into a one- 
to-one correspondence with a map of this unit interval onto itself. To 
illustrate this point, we first consider the case where p = q = 1/2. Then the 
value of  x corresponding t o  a ( 0 ) = l X O ~ . l ( X  2 . . .  is given by the binary 
representation of  a fraction 

x(0) ~0 ei (3.3) = 

where the ei are always 0 or 1. These ei, taken in order, represent the 
Bernoulli sequence a(0), Eq. (3.1). Similarly the value of  x(t) corre- 
sponding to a(t) is 

x(t) = ~ ~ i=o~-i~ 7 (3.4) 

where again the 0q are always 0 or 1, and x(t) corresponds to the sequence 
a(t) =c~,c~ ,+~+2 . - . ,  as in Eq. (3.2). The map M which replaces x(t) by 
x(t + 1), representing a coin toss, is the binary map 

x( t+l) - -M(x( t ) )=2x( t )  (mod 1) (3.5) 
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(a) 

x(t+l) 

1 U bU i xc,+,l i 

0 
0 1/2 0 p 

x(t) x(t) 

Fig. 1. Cont inuous maps associated with coin toss sequences. (a) The map appropriate for 
the case p = q = 1/2, Eq. (3.5). (b) is the map  appropriate for the case p -~ q, Eq. (3.6). 

Analogous results obtain in the case that p ~ q ~  1/2. Here the map 
M(x(t)) is 

f ~ x ( t )  for 0<~x( t )<p  

x(t + 1 ) = M(x(t)) = (3.6) 

l ~ ( x ( t ) - p )  for p<~x(t )<l  

and the corresponding value for x(0) is 

x(0) = c%( 1 -/-/~o) + ~,( 1 - F/=, )/-/~o + 0(2( 1 -/7~,_)/7~o/7=, + ... 

where/-/o =P  and/71 = q. 
These maps are illustrated in Figs. la and lb. Since the coin tossing 

experiment can be expressed in terms of a map on a continuous variable 
x(t), one can easily define a positive, nonzero Lyapunov exponent that 
characterizes coin tossing as a chaotic process. 

Imagine, then, two sequences adO) and a2(0) which are represented by 
very nearby points x(0) and x~(0)=x(0)+f ix (0)  on the unit interval. The 
Lyapunov exponent characterizes the exponential separation of the phase 
points x(t) and xj(t) with time t. To see this exponential separation, 
suppose fix(0) is very small, and compute f i x ( t )=x~( t ) - x ( t )  as 

Ifix(t)l = IM'(x(0) + fix(0)) - M'(x(0))l 

_ dM'(x(O)) . Ifix(0)l 
dx(O) 

t - - I  

= 1--I IM'(x(~))l. Ifix(0)l 
r=O 

,3.7, 
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where M'  is the tth iterate of the map M and dx( t  + 1 ) / d x ( t ) = M ' ( x ( t ) )  is 
the derivative of the map at x( t ) .  We have used the mapping (3.6), and t~ 
is the number of times that heads appears in t trials, and t2 = t - t ,  is the 
number of times that tails appears. The right-hand side of Eq. (3.7) can be 
written in an exponential form 

with 

[fix(t)[ = e '~('1 [fix(0)[ 

2(t) = ( t~/t) log(Z/p) + ( t2/t)  log(Z/q) (3.8) 

Since, as t ~ c ~ ,  the fraction of the time that heads appears, t l / t  
approaches the value p, and the fraction of time that tails appears t2/t  
approaches q, we find that 

2 = lira 2(t) = p log(Z/p) + q log(Z/q) 
t ~ o G  

(3.9) 

It is important to note that we have defined the Lyapunov exponent 
2 in Eq. (3.9) as the t ime average of the rate of the exponential separation 
of two nearby points in the appropriate phase space. In replacing the 
quantities t , / t  and t2/ t  by p and by q, respectively, in the transition from 
Eq. (3.8) to Eq. (3.9), we have made use of the ergodic properties of the 
coin toss system to replace a time average by an ensemble average. There- 
fore starting from Eq. (3.7) and using an ergodic theorem, we can also 
express the Lyapunov exponent as an ensemble average 

2--  lim -1 ( log [fx(t)/fix(O)[> 
t ~  t 

--- lim -1 ' -  1 , - ~  t ~ log [M'(x(r))[ = ( l o g  IM'(x)l> 
r = O  

(3.20) 

where the angular brackets denote an average over all possible realizations 
of coin toss experiments with probability p for heads and q for tails. 

The first line of Eq. (3.10) expresses the Lyapunov exponent in terms 
of the ensemble average of the logarithm of the stretching factor 
[fix(t)/fix(O)l for a given trajectory. Due to the ensemble average, the time 
dependence is very simple and this expression is a constant for t > 0. One 
might ask if the distribution of values of the separation factor is sharp or 
broad, and a convenient measure of this distribution is found by computing 
the quantity t -~ log<fix( t ) / fx(O)>,  where the ensemble average and the 
logarithm have been interchanged. In dynamical systems theory, the latter 
quantity is called the "topological entropy" hx. Several equivalent defini- 
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tions of hr for stochastic systems are possible) 9-~" 14) Here we follow the 
line developed so far, and define hv by 

h T = ~ log< i6x(t)/6x(O)] > for t > O  (3.11) 

For the coin toss system, h r  can be easily computed as 

l ! - -  

h T = t l o g [ , , ~ = 0 ~ ) " ( ~  ) '  "t , , ( t t !_ t l ) ,p"q ' -"]=log2 (3.12) 

Here we have used the facts that the probability that I I heads and t - t ~  
tails will occur is p'~qt-", and the binomial factorial accounts for the 
number of different ways t~ heads and t -  tl tails can occur in t steps. The 
topological entropy is independent o f p  and for p ~ q is very different from 
2, showing that there is a broad distribution of ]8x(t)/,~x(O)[ over the 
ensemble of possible trajectories. 

Although we will not present the details here, a calculation of the 
Kolmogorov-Sinai  entropy per unit time can be given for the coin toss 
sequences as well. tg-~" 14) To do this one must examine the rate at which 
small subregions of the unit interval get distributed over the entire unit 
interval with time. Then the KS entropy measures a global mixing property 
of the dynamics, while the Lyapunov exponents measure the rate of separa- 
tion of trajectories from a nearby reference trajectory. For  the coin tossing 
sequences described above, one finds 

hxs = p  log(1/p) + q log(1/p) = ~t (3.13) 

The equality hKs = 2 is an example, for coin toss sequences, of a more 
general theorem known as Pesin's theorem. 19-14~ 

4. T H E  LLG AS  A D Y N A M I C A L  S Y S T E M  

The point of the discussion in Section 3 is, of course, to show that 
some classes of stochastic processes can be mapped onto differentiable 
dynamical systems, and thus the methods of dynamical systems theory can 
be applied to them. The LLGs described in Section 2 fall into this class, so 
that the dynamics of a LLG can be characterized by a KS entropy and by 
2, where 2 is the analog of the sum of positive Lyapunov exponents. It is 
possible to formulate the dynamics of a LLG as a Markov process, similar 
to the formulation of the coin toss system as a Bernoulli process, and to 
employ some usual methods of dynamical systems theory appropriate for 
Markov systemsJ 9-~1~ Here we will instead use simple linear mapping 
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methods to provide an immediate introduction to the subject and to show 
that Lyapunov exponents, etc., are natural objects for study in LLGs. 4 In 
our  further work, we use Markov  methods or maps as convenient. The 
results presented here for closed, periodic systems are quite elementary, but 
form a useful starting point for further work. 

We illustrate this method for the case of a one-dimensional L L G  at 
density p on a lattice of L sites (L>> l/p) and with periodic boundary  
conditions imposed. The phase space necessary for a description of  the 
dynamical properties of  this system must be more elaborate than that for 
a coin toss since at every instant of  time the particle has both a velocity, 
which can take two values ( _  1), and a location on the lattice. Further- 
more, the lattice itself has a fixed configuration of  scatterers, so the 
dynamical state of the moving particle depends on the quenched configura- 
tion of scatterers as well as on its position on the lattice and on the 
direction of  its motion. 

The phase space necessary to keep track of these various quantities 
can be described as follows. ~8~ We consider the particle moving on a one- 
dimensional lattice with a quenched configuration of  scatterers. Each of  the 
lattice sites is labeled by an integer n, where 17 ranges from 1 to L, and the 
periodic boundary  conditions imply site L + j  is to be identified with site j, 
where j is an integer. The mot ion of the particle on this lattice can be 
modeled as a dynamic process by associating with each lattice site n a half- 
open unit interval, [11, n + 1) and supposing that at each instant of  time 
there is a map which moves points on the interval to points on the adjacent 
intervals associated with the sites (tl + 1 ) and (n - I ) according to a deter- 
ministic rule. It is convenient to think of  a moving particle at site i1 as being 
somewhere in the interval [11, 11 + 1) and that its mot ion from one lattice 
site to the next is determined by its specific location on the interval and by 
the direction of  the precollision velocity when the particle arrives at the 
point. 

The dynamical phase space variable describing the location and direc- 
tion of  the moving particle will be denoted by .~, = (r,, c,), where c, is the 
precollision velocity of the particle when it arrives at the point r, at the tth 
time step and r, is a continuous variable, r , =  [ r , ]  +/:, .  Here [ r , ]  denotes 
the integer part  of r,, which we associate with lattice site n, and ft is a 
continuous variable, 0 ~< ?, < 1 which locates the position of the moving 
particle in the interval [ [ r , ] ,  [ r , ]  + 1) at the tth time step. The dynamics 
of the moving particle at each time step is given by a map x,+ ~ = M(.x',) 

4 It is worth mentioning that a closely related idea of using a baker's transformation to 
describe a collision process leading to ergodic behavior appears in Ref. 15. We thank 
Prof. Lebowitz for calling this reference to our attention. 
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Fig. 2. Continuous maps associated with a one-dimensional Lorentz lattice gas. We show 
the interval (0, I } for convenience. (a, b} The maps (4.1) that are appropriate when there is 
no scatterer at lattice site 0. (a) The map for a particle incident from the left (c = + 1 ); (b) the 
map for a particle incident from the right (c = - 1 ). (c, d) The maps (4.2) that are appropriate 
when a scatterer is present at site 0. (c) The case when a particle is incident from the left 
(c = +1); (d) the case when the particle is incident from the right (c = -1) .  

which  gives the pos i t ion  and  precol l i s ion  ve loc i ty  o f  the par t ic le  at t ime 
step (t + !) in te rms  of  its pos i t ion  and  precol l i s ion  ve loc i ty  at t ime step t. 

The  s t ruc ture  o f  the m a p  depends  u p o n  whe the r  o r  no t  there  is a sca t te rer  

at site [ r , ]  and  u p o n  the preco l l i s ion  ve loc i ty  c,. In Figs. 2 a - 2 d  we 
i l lustrate  the  m a p  M for the  four  possible  cases. F igures  2a and 2b, repre-  

sent the m a p s  a p p r o p r i a t e  for the case w h e n  there  is no  sca t te re r  at [ r , ] .  
These  m a p s  have  the ana ly t ic  fo rm 

r ,+ ]  = M ~  

Ct+ l ~ C  r 

(4.1) 
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Here, the superscript zero denotes the absence of a scatterer at [r , ] ,  and 
the postcollision velocity is the same as the precollision velocity, c, = ( _+ 1 ). 
The absence of a scatterer means that at the next time step the particle 
proceeds to the next adjacent site in the direction of its velocity. Note 'also 
that these maps have unit slope. In Figs 2c and 2d we illustrate the maps 
appropriate for the cases where a scatterer is present at [r ,] .  Then the 
maps x,+~ = M(x,) has two possible analytic forms 

I 1 
[ r , ]  + c, + - / ' , ,  

r, + l = Mc,(r,) = P 

~ [ r , ] - c , + ~ ( ~ , - p ) ,  

= I  c,, O~<~,<p 
c,+l ~ - c , ,  p ~ < ? , < l  

O~<g,<p 

p ~< ?, < 1 
(4.2) 

In a way similar to that for the coin tossing situation, the unit interval is 
divided into two regions of length p and of length q, with p + q = 1, such 
that the region of length p leads to forward scattering and that of length 
q leads to backscattering. Note that the slopes of the maps, needed for the 
computation of 2 are lip for the forward scattering region and are 1/q for 
the backscattering regions. 

Now that we have described the continuous phase-space variable x, 
for the moving particle and the four possible analytic forms for the map 
x, +~ = M(x,), at each step, we can outline the calculation of the exponential 
separation rate 2 of trajectories which characterizes the chaotic dynamics of 
the LLG. If we denote the Jacobian of the map by [M'(x~)[ = [Ox~+l/Ox ~ ], 
then we compute [6x(t)/fix(O)[ following the method outlined in Section 3, 

6x(t) , - i  
-- 1-[ IM'(x~)l (4.3) 

r = O  

The quantity 2 is defined to be the limit as t ~ ~ of 2(t[x(0)) when 

6x(t) 1 , - 1  
2 ( t l x ( 0 ) ) = l l ~  ~ = t ~ 0  l~ (4.4) 

In general 2(t [ x(0)) depends upon time and upon the initial phase point 
x(0). To evaluate 2=l im,_o~2( t  [ x(0)), we can proceed in an intuitive 
way. The heuristic evaluation of 2 is obtained by evaluating the right hand 
side of Eq. (4.3) by observing that the Jacobian of the map (4.1) and (4.2) 
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is given by IM'(x~)l = Idr,§ I, where the derivative is either l/p, 1/q, 
or 1, so that 

6x( t ) 
6X(0) = ( ~ ) "  (~ )  t2 (1 ,'3 (4.5) 

Here the map M is such that: 

(a) If the moving particle encounters a scatterer at a given time step 
and is scattered in the forward direction, the slope of the map is lip. We 
suppose that in t time steps, t3 collisions are of this type. 

(b) If the particle encounters a scatterer at a given time step and is 
backscattered, the slope of the map is 1/q. We suppose that in t time steps, 
t2 collisions are of this type. 

(c) If the particle arrives at a site which is not occupied by a 
scatterer, then the map has unit slope. We suppose that this happens t 3 

times in t time steps, where tl + t2 + t3 = t. 

Then 2(tlx(0)) is clearly 

2(t I x(0)) = (t~/t) log(I/p) + (t2/t) log(l/q) (4.6) 

The quantity of interest to us is (;t(t I x (0 ) )= (1 / t ) ( l o g l6 x ( t ) / 6 x (O ) l ) ,  
where the angular brackets denote an average over (a) an ensemble of 
replicas of the LLG with different configurations of scatterers with average 
density p and (b) all starting configurations x(0) of the moving particle. 
One can now argue that with this ensemble 

( t l / t )  =pp and ( t2/ t )  =pq (4.7) 

since for long times and for large systems the fraction of the times that a 
particle encounters a scatterer and maintains/reverses its original direction 
is equal to the product of the probability p that a particle will encounter 
a scatterer with the probability p/q that it will maintain/reverse its velocity 
direction. Thus we obtain 

2 =  lim (2( t  I x(0)))  =p[plog(1/p)+qlog(1/q)] (4.8) 
t ~ o o  

This result can be confirmed by a more careful argument using the 
Frobenius-Perron equation, but since the result is rather clear, we will not 
pursue this point further. We also note that simple arguments based on the 
Frobenius-Pe(ron equation show that the result, Eq. (4.8), applies for a 
quenched configuration of scatterers as well. 

We wish to point out one feature of the expression (4.6) for 2 that is 
important for making the connection between dynamical systems theory 
and the kinetic theory of gases. The quantities t~ and t2 appearing as the 

822/81/I-2-33 



510 Dor fman etal .  

r ight-hand side of  Eq. (4.6) can be interpreted respectively as the number  
of  " t ransmit t ing"  collisions and the number  of  "reflecting" collisions of  the 
moving part icle with the scatterers in time interval  t. These "collision 
numbers"  are typical  quanti t ies  of  interest in kinetic theory,  and  their  
average values, taken over an ensemble of  configurat ions of scatterers,  can 
easily be computed  by means  of  a kinetic equat ion.  Of  course,  the results, 
Eq. (4.7) are recovered by this means,  but  one can also determine  the rate 
at which the asymptot ica l ly  long-t ime results are achieved. The connect ion  
between dynamica l  systems theory and kinetic theory,  so s imply i l lustrated 
here, is of  considerable  interest in more  general  cases, tl6) 

In fact, by using methods  of  kinetic theory,  we have computed  
( 2 ( t l x ( 0 ) ) ) s c a t t ,  where the average is over an ensemble of  scat terer  
configurations,  for a fixed x(0). These calculat ions show that  as t ~ oo, 

( 2 ( t  ] x(0)))scau =p[p l o g ( l / p ) + q  l o g ( l / q ) ]  + O(t -1)  + O(t -3/2) (4.9) 

2 0  . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  

o <loglSx(t)/Sx(O)l > / 

1 5  

I 0  

5 

O C  . . . . . . . .  = . . . . . . . . .  i . . . . . . . . .  

0 10  2 0  3 0  

t 

Fig. 3. Results from computer simulations illustrating the exponential separation of trajec- 
tories for the filled (p = l ) Lorentz lattice gas for p = 0.8, q = 0.2. The circles represent the 
average needed or the Lyapunov exponent. The slope of the line is 0.500, in excellent agree- 
ment with the value 0.504 predicted by Eq. (4.8). The squares represent the average needed for 
the topological entropy h T. The slope of the line is 0.687, and the theoretical prediction is 
log 2 = 0.693, We used 2 x l05 nearby pairs of trajectories in the simulations to compute these 
c u r v e s .  
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The coefficients of all terms in Eq. (4.9), those of O(t- t ) ,  and mode- 
coupling terms of order t -3/2, o r  t - l - a / 2  for a LLG in d-dimensions, can 
be computed explicitly. 

It is important to note that: 

(a) The methods of kinetic theory have a valuable role to play in the 
evaluation of dynamical quantities for systems such as a LLG where the 
statistical randomness of collisions is important. 

(b) One might also wish to compute the average value 
log( [~x(t)/~x(O)l ) rather than the average value ( log I~x(t)/~x(O)l ) as 
calculated above. As in Section 3, for the coin toss, one can use ergodic 
theory arguments to show that the former quantity, log( .  ),  is related to 
the topological entropy tg-lj'131 of the system, while the latter quantity, 
( log( - ) ) ,  is the proper Lyapunov exponent and thus related to the KS 
entropy. The difference between these two quantities as determined by 
computer simulation is illustrated in Fig. 3 for the case p = 1. 

5. C O N C L U S I O N  

We conclude this paper with a brief discussion of open LLG systems 
and some general remarks. 

The purpose of our research on open systems is to study the connec- 
tion between nonequilibrium statistical mechanics and chaos theory, and 
more specifically between transport coefficients and Lyapunov exponents 
and the KS entropy. '8~ To do this one has to study 2 and hKs for the set 
of trajectories that remain in a bounded region of the lattice for an infinite 
time. 

For  example, suppose that instead of imposing periodic boundary con- 
ditions on a system of L sites, we place absorbers at both ends of the line, 
i.e., at sites 0 and L + 1, such that a particle starting as one of the sites 
1, 2 ..... L will be absorbed if it reaches 0 or L + 1. Then almost all of the 
trajectories for the moving particle will eventually lead to absorption at the 
boundaries. However, in the continuous phase space of trajectories there 
will always be a set of trajectories of measure zero that never lead to 
absorption. To compute the coefficient of diffusion for the LLG one has to 
determine 2 and hKs for the zero-measure set of trajectories. This requires 
a very detailed study of the system, keeping track of the location of the 
moving particl~ at each time step, and always restricting trajectories to 
those which do not lead to absorption. Both analytic and computer studies 
of the properties of these trajectories, the Lyapunov exponents, and KS 
entropy associated with them and of the escape rate formula are currently 
underway.IS 
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We also note that dynamical systems can be described by a quantity, 
the topological pressure, that plays a role in chaotic systems similar to that 
of the Helmholtz free energy of statistical mechanical systems in the 
canonical ensemble. 17~ For several reasons this topological pressure is an 
interesting quantity for study, and it, too, is accessible to both analytical 
and computer studies, t8~ 

In this paper we have tried to emphasize a few central points that 
motivate our interest in the chaotic dynamics of Lorentz lattice gases. 
These points are: 

1. There exist interesting and general connections between transport 
properties of nonequilibrium systems and the dynamical properties of these 
systems when the phase space trajectories of the system are studied in 
detail. 

2. Lattice gas automata, and Lorentz lattice gases in particular, 
represent simple systems in which both the transport and dynamic proper- 
ties can be studied in considerable detail using analytic methods as well as 
computer simulations. 

3. Methods traditionally used to study the statistical mechanics of 
nonequilibrium systems can be very useful also to study the chaotic proper- 
ties of the same systems. This fact illustrates the deep connection between 
the chaotic properties of a dynamical system and the possible existence of 
an equilibrium state of the system. In our work we have used techniques 
from the kinetic theory of gases--kinetic equations, cluster expansions, 
mode coupling analyses, as well as techniques based on the Chapman- 
Kolmogorov equations familiar from probability theory. 

4. The interface between dynamical system theory and nonequilibrium 
statistical mechanics is a new area of research and it promises to be very 
fruitful. 
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